Abstract

The maximum entropy method (MEM) is a powerful tool for the recovery of unknown probability density functions (PDF) and has growing popularity in the reliability analysis community. However, MEM may be inaccurate for PDFs with a complex shape (e. g. multiple modals or a long tail), influencing the accuracy of the reliability analysis greatly. To overcome this deficiency, this study proposes a novel MEM paradigm based on the B-spline theory and the low-discrepancy sequence. Firstly, to enhance the performance of MEM for complex PDFs, the B-spline functions are used to construct the MEM PDF. Correspondingly, the iteration formulation is derived for the undetermined parameter estimation of the B-spline-based MEM PDF based on the closed solution for minimizing the Kullback-Leibler divergence. Then, we adopt the low-discrepancy sequence to calculate the objective function of minimizing the Kullback-Leibler divergence efficiently. Compared with MEM and other moment-based reliability analysis methods, the proposed method does not require the statistical moments, and integrates the advantages of the B-spline theory and MEM. To illustrate the benefits of our method, five examples are analyzed and compared with some classical reliability analysis methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.