Abstract

ABSTRACTA novel magnetorheological honing process is designed and developed for nano-finishing of cylindrical internal surfaces with the help of permanent magnets. The radial movement of magnetic tool surface is adjusted as per the internal diameter of different cylindrical components and make it fixed before start of finishing so that it can maintain constant working gap while perform finishing. The present developed magnetic tool surface always constitutes higher magnetic field than the inner surface of ferromagnetic or non-ferromagnetic cylindrical workpiece. This is an important requirement to finish the internal surface of ferromagnetic or non-ferromagnetic cylindrical components because it ensures MR polishing fluid cannot stick on the workpiece surface while performing the finishing. Hence, present developed process is useful for finishing of ferromagnetic cylindrical molds, dies, hydraulic actuators, etc. for its better functional applications after the conventional honing or grinding process. The internal surface roughness of cylindrical ferromagnetic workpiece is dropped to 90 nm from its initial value of 360 nm in 100 minutes of finishing. Further scanning electron microscopy has also been done to understand the surface characteristics of finished workpiece. The results revealed that the developed magnetorheological honing process is capable to perform nano-finishing of internal surface of the ferromagnetic cylindrical components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call