Abstract
A novel low-voltage low-power programming method for NAND Flash cell is presented. By utilizing the self-channel boosting technique, a sufficiently high local field is established in a NAND string that causes efficient hot-carrier injection. This method has been successfully demonstrated in the 75-nm-node floating-gate NAND cells, along with comprehensive studies on bias and timing effects. Requirements for high-voltage supporting devices, circuitry, and process in conventional Fowler-Nordheim programmed NAND cells are greatly mitigated. It would be very attractive for scaled NAND Flash technology in the future.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have