Abstract
With the intensification of global warming, extreme weather events have occurred more frequently, among which cold stress has become one of the major environmental factors that restrict global crop yield and production. Multiple long noncoding RNAs (lncRNAs) have been predicted or recognized in the plant response to cold stress, however, the molecular biological functions of most of these RNAs are still poorly understood. Here, we identified a novel lncRNA, COLD INDUCED lncRNA 1 (CIL1), as a positive regulator of the plant response to cold stress in Arabidopsis. CIL1 was significantly induced when the plant was exposed to cold stress. Moreover, knockdown mutants showed more sensitivity to cold stress than the wild type did, accompanied by an increased content of endogenous ROS (reactive oxygen species) and reduced osmoregulatory substances. Genome-wide transcriptome analysis indicated that 256 genes were downregulated and 34 genes were upregulated in cil1 mutants under cold stress, which were mainly involved in hormone signal transduction, ROS homeostasis and glucose metabolism. Our study implies that CIL1 has a positive effect on the plant response to cold stress by regulating the expression of multiple stress-related genes during the seedling stage.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have