Abstract

Abstract Background and Objective: Reducing the number of falls in nursing facilities is crucial to prevent significant injury, increased costs, and emotional harm. However, current fall detection systems face a trade-off between accuracy and inference speed. This work aimed to develop a novel lightweight fall detection system that can achieve high accuracy and speed while reducing computational cost and model size. Methods: We used convolutional neural networks and the channel-wise dropout and global-local attention module to train a lightweight fall detection model on over 10,000 human fall images from various scenarios. We also applied a channel-based feature augmentation module to enhance the robustness and stability of the model. Results: The proposed model achieved a detection precision of 95.1%, a recall of 93.3%, and a mean average precision of 91.8%. It also had a significantly smaller size of 1.09 million model parameters and a lower computational cost of 0.12 gigaFLOPS than existing methods. It could handle up to 20 cameras, simultaneously with a speed higher than 30 fps. Conclusion: The proposed lightweight model demonstrated excellent performance and practicality for fall detection in real-world settings, which could reduce the working pressure on medical staff and improve nursing efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.