Abstract

Abstract Composite ceramic membrane is one of the most attractive concepts which combines the advantages of different phases into a single membrane matrix. Recently, the reported significant increased oxygen surface kinetics on the Perovskite/Ruddlesden-Popper composite system because of the formation of novel and fast oxygen transport paths along the hetero-interface has been implanted into the oxygen permeation membrane system. In this work, a novel La0.6Sr0.4Co0.2Fe0.8O3-δ-(La0.5Sr0.5)2CoO4+δ (LSCF-LSC) composite hollow fiber membrane is synthesized with oxygen permeation flux of 4.52 mL min−1 cm−2 at 950 °C. It presents round 4 times and 2.3 times of that of the single LSCF membrane and LSC-coated LSCF membrane at 900 °C. For better comparison, (La0.576Sr0.424)1.136Co0.3Fe0.7O3-δ (LSCF-new) is prepared based on the composition of LSCF-LSC composite. The enhanced oxygen permeability was further investigated through electrochemical impedance spectroscopy (EIS) measurements. We also confirm that LSCF-LSC shows significantly lower area specific resistance (ASRs) for LSCF-LSC|Ce0.8Sm0.2O1.9 (SDC)|LSCF-LSC symmetrical cell relative to other symmetrical cells. This novel LSCF-LSC composite membrane also presents high CO2 tolerance, with stable oxygen permeation fluxes round 2.6 mL min−1 cm−2 at 900 °C for 100 h.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.