Abstract

A novel negative-resistance transistor (NRT) with a Lambda shaped I–V characteristic is demonstrated in the 0.5 μm standard CMOS process. To save on the number of component devices, this device does not use standard device models provided by CMOS processes, but changes a MOSFET and a BJT into a single device by fabricating them in the same n-well, with a p-type base layer as the MOSFET’s substrate. The NRT has a low valley current of −6.82 nA and a very high peak-to-valley current ratio of 3591. The peak current of the device is −24.49 μA which is low enough to reduce the power consumption of the deivce, and the average value of its negative resistance is about 32 kΩ. Unlike most negative-resistance devices which have been fabricated on compound semiconductor substrates in recent years, this novel NRT is based on a silicon substrate, compatible with mainstream CMOS technology. Our NRT dramatically reduces the number of devices, minimizing the area of the chip, has a low power consumption and thus a further reduction in cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.