Abstract

Relational triple extraction is a critical step in knowledge graph construction. Compared to pipeline-based extraction, joint extraction is gaining more attention because it can better utilize entity and relation information without causing error propagation issues. Yet, the challenge with joint extraction lies in handling overlapping triples. Existing approaches adopt sequential steps or multiple modules, which often accumulate errors and interfere with redundant data. In this study, we propose an innovative joint extraction model with cross-attention mechanism and global pointers with context shield window. Specifically, our methodology begins by inputting text data into a pre-trained RoBERTa model to generate word vector representations. Subsequently, these embeddings are passed through a modified cross-attention layer along with entity type embeddings to address missing entity type information. Next, we employ the global pointer to transform the extraction problem into a quintuple extraction problem, which skillfully solves the issue of overlapping triples. It is worth mentioning that we design a context shield window on the global pointer, which facilitates the identification of correct entities within a limited range during the entity extraction process. Finally, the capability of our model against malicious samples is improved by adding adversarial training during the training process. Demonstrating superiority over mainstream models, our approach achieves impressive results on three publicly available datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.