Abstract
BackgroundMost Chinese joint entity and relation extraction tasks in medicine involve numerous nested entities, overlapping relations, and other challenging extraction issues. In response to these problems, some traditional methods decompose the joint extraction task into multiple steps or multiple modules, resulting in local dependency in the meantime.MethodsTo alleviate this issue, we propose a joint extraction model of Chinese medical entities and relations based on RoBERTa and single-module global pointer, namely RSGP, which formulates joint extraction as a global pointer linking problem. Considering the uniqueness of Chinese language structure, we introduce the RoBERTa-wwm pre-trained language model at the encoding layer to obtain a better embedding representation. Then, we represent the input sentence as a third-order tensor and score each position in the tensor to prepare for the subsequent process of decoding the triples. In the end, we design a novel single-module global pointer decoding approach to alleviate the generation of redundant information. Specifically, we analyze the decoding process of single character entities individually, improving the time and space performance of RSGP to some extent.ResultsIn order to verify the effectiveness of our model in extracting Chinese medical entities and relations, we carry out the experiments on the public dataset, CMeIE. Experimental results show that RSGP performs significantly better on the joint extraction of Chinese medical entities and relations, and achieves state-of-the-art results compared with baseline models.ConclusionThe proposed RSGP can effectively extract entities and relations from Chinese medical texts and help to realize the structure of Chinese medical texts, so as to provide high-quality data support for the construction of Chinese medical knowledge graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.