Abstract

The research on the adsorption and conversion of non-polar gases (carbon dioxide, hydrogen, iodine, etc.) has attracted global attention. Extensive work has revealed the intuitive impact of the heteroatom effect on the adsorption performance of covalent organic framework (COF) adsorbents for non-polar gases. However, more influencing factors must be studied to more precisely design and construct target-specific COF adsorbents. In this work, an underlying influencing factor, local polarity, is discovered, which is defined as the polarity of the functional moiety. Due to the substitution of strong electrophile, the electron cloud distribution of the COF framework is regulated, and the local polarity that better matches the adsorption of target electrophilic gas (iodine) has been observed. The local polarity of COF has been controlled through several strong electrophilic ionic liquids, dramatically improving adsorption performance. The saturated adsorption capacity increases from 1.5 to 5.2 g·g−1, and the adsorption kinetics index k80% value increases from 0.51 to 2.69 g·g−1·h−1. The insight would support precise chemical regulation of target-specific COF in energy and environment science.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.