Abstract

In this paper, a novel signal processing circuit which can be used for the measurement of H+ ion and urea concentration is presented. A potentiometric method is used to detect the concentrations of H+ ions and urea by using H+ ion-selective electrodes and urea electrodes, respectively. The experimental data shows that this measuring structure has a linear pH response for the concentration range within pH 2 and 12, and the dynamic range for urea concentration measurement is in the range of 0.25 to 64 mg/dL. The designed instrumentation circuit possesses a calibration function and it can be applied to different sensing electrodes for electrochemical analysis. It possesses the advantageous properties of being multi-purpose, easy calibration and low cost.

Highlights

  • IntroductionThe analytical method of detecting organisms exploits the molecular recognition between enzyme and acceptor

  • The prototype of biosensors was first proposed by Clark and Lyon in 1962 [1]

  • It is used to measure the concentrations of hydrogen ion and urea by using the H+ ion-selective electrodes and urea electrodes, respectively

Read more

Summary

Introduction

The analytical method of detecting organisms exploits the molecular recognition between enzyme and acceptor This concept involves placement of an enzyme in close proximity to an electrode surface, where the Sensors 2012, 12 enzyme is able to catalyze a reaction. In 1967, Updike and Hicks used glucose oxidase immobilized on a gel to measure the concentration of glucose in biological solutions and in tissues in vitro [3]. From this moment on, many researches devoted to the development of biosensors, such as the O2, H2O2, H2, H+, NH3, CO2 electrodes and ion-sensitive field effect transistor (ISFET) [4]. The workability of the sensing system is verified by measurement results

Realization of Sensing Configuration
Experimental Results
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.