Abstract

This study used the properties of amino acid residues to screen antioxidant peptides from hazelnut protein. It was confirmed that the type and position of amino acid residues, grand average of hydropathy, and molecular weight of a peptide could be comprehensively applied to obtain desirable antioxidants after analyzing the information of synthesized dipeptides and BIOPEP database. As a result, six peptides, FSEY, QIESW, SEGFEW, IDLGTTY, GEGFFEM, and NLNQCQRYM were identified from hazelnut protein hydrolysates with higher antioxidant capacity than reduced Glutathione (GSH) against linoleic acid oxidation. The peptides having Tyr residue at C-terminal were found to prohibit the oxidation of linoleic acid better than others. Among them, peptide FSEY inhibited the rancidity of hazelnut oil very well in an oil-in-water emulsion. Additionally, quantum chemical parameters proved Tyr-residue to act as the active site of FSEY are responsible for its antioxidation. This is the first presentation of a novel approach to excavating desired antioxidant peptides against lipid oxidation from hazelnut protein via the properties of amino acid residues.

Highlights

  • Published: 6 January 2022Peptides, consisting of amino acid residues, are popular as antioxidants owing to their advantages related to absorption and safety [1]

  • The active amino acid residues located at C-terminal are more active than other positions

  • Compared to traditional technology for manufacturing bioactive peptides, our work presents a practical route able to successfully screen desirable highactivity antioxidant peptides from hazelnut protein hydrolysates by featuring the properties of amino acid residues

Read more

Summary

Introduction

Published: 6 January 2022Peptides, consisting of amino acid residues, are popular as antioxidants owing to their advantages related to absorption and safety [1]. Active amino acids Cys, Met, Trp, and Tyr, as well as peptides which are designed based on these residues, have been confirmed to eliminate reactive oxygen species (ROS), reactive nitrogen species (RNS), as well as ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid) and DPPH (2,2’-diphenyl-1-picrylhydrazyl) radicals in real peptides’ system [1,3]. Is it possible to directly screen antioxidant peptides according to the features of active.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call