Abstract

Sixteen novel antioxidant peptides from Asian swamp eel (ASE) were identified in previous studies. However, their chemical and cellular antioxidant mechanisms remain unclear. Molecular docking of these peptides with ABTS and DPPH radicals revealed the critical role of hydrogen bonding and Pi-Pi stacking hydrophobic interactions between hydrophobic amino acid residues and free radicals. Residues, such as tryptophan, proline, leucine, and valine, played significant roles in these interactions. All these peptides exhibited notable erythrocyte morphoprotective effects in a model of AAPH-induced oxidative damage of human erythrocytes. Erythrocyte hemolysis was reduced primarily through the modulation of both non-enzymatic (GSH/GSSG) and enzymatic antioxidant systems (SOD, CAT, and GSH-Px) by these peptides. A decrease in levels of MDA, LDH release, and hemoglobin oxidation was observed. Among the peptides, VLYPW demonstrated superior chemical and cellular antioxidant activities, which may be attributed to its higher levels of tyrosine and tryptophan, as well as to its increased hydrophobic amino acid content.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.