Abstract
The cyclic AMP receptor protein (CRP) from Escherichia coli has been extensively studied for several decades. In particular, a detailed characterization of CRP interaction with DNA has been obtained. The CRP dimer recognizes a consensus sequence AANTGTGANNNNNNTCACANTT through direct amino acid nucleobase interactions in the major groove of the two operator half-sites. Crystal structure analyses have revealed that the interaction results in two strong kinks at the TG/CA steps closest to the 6-base-pair spacer (N6). This spacer exhibits high sequence variability among the more than 100 natural binding sites in the E. coli genome, but the exact role of the N6 region in CRP interaction has not previously been systematic examined. Here we employ an in vitro selection system based on a randomized N6 spacer region to demonstrate that CRP binding to the lacP1 site may be enhanced up to 14-fold or abolished by varying the N6 spacer sequences. Furthermore, on the basis of sequence analysis and uranyl (UO2(2+)) probing data, we propose that the underlying mechanism relies on N6 deformability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.