Abstract

The objective of this study was to develop a novel in vitro model for smooth muscle cell (SMC) differentiation from human embryonic stem cell-derived mesenchymal cells (hES-MCs). We found that hES-MCs were differentiated to SMCs by transforming growth factor-β (TGF-β) in a dose- and time-dependent manner as demonstrated by the expression of SMC-specific genes smooth muscle α-actin, calponin, and smooth muscle myosin heavy chain. Under normal growth conditions, however, the differentiation capacity of hES-MCs was very limited. hES-MC-derived SMCs had an elongated and spindle-shaped morphology and contracted in response to the induction of carbachol and KCl. KCl-induced calcium transient was also evident in these cells. Compared with the parental cells, TGF-β-treated hES-MCs sustained the endothelial tube formation for a longer time due to the sustained SMC phenotype. Mechanistically, TGF-β-induced differentiation was both Smad- and serum response factor/myocardin dependent. TGF-β regulated myocardin expression via multiple signaling pathways including Smad2/3, p38 MAPK, and PI3K. Importantly, we found that a low level of myocardin was present in mesoderm prior to SMC lineage determination, and a high level of myocardin was not induced until the differentiation process was initiated. Taken together, our study characterized a novel SMC differentiation model that can be used for studying human SMC differentiation from mesoderm during vascular development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call