Abstract

This work presents a first generation incoherent scatter CT (ISCT) hybrid (analytic-iterative) reconstruction algorithm for accurate ρ{e}imaging of objects with clinically relevant sizes. The algorithm reconstructs quantitative images of ρ{e} within a few iterations, avoiding the challenges of optimization based reconstruction algorithms while addressing the limitations of current analytical algorithms. A 4π detector is conceptualized in order to address the issue of directional dependency and is then replaced with a ring of detectors which detect a constant fraction of the scattered photons. The ISCT algorithm corrects for the attenuation of photons using a limited number of iterations and filtered back projection (FBP) for image reconstruction. This results in a hybrid reconstruction algorithm that was tested with sinograms generated by Monte Carlo (MC) and analytical (AN) simulations. Results show that the ISCT algorithm is weakly dependent on the ρ{e} initial estimate. Simulation results show that the proposed algorithm reconstruct ρ{e} images with a mean error of -1% ± 3% for the AN model and from -6% to -8% for the MC model. Finally, the algorithm is capable of reconstructing qualitatively good images even in the presence of multiple scatter. The proposed algorithm would be suitable for in-vivo medical imaging as long as practical limitations can be addressed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call