Abstract
The main aim of this study is to propose a novel hybrid intelligent model named MBSVM which is an integration of the MultiBoost ensemble and a support vector machine (SVM) for modeling of susceptibility of landslides in the Uttarakhand State, Northern India. Firstly, a geospatial database for the study area was prepared, which includes 391 historical landslides and 16 landslide-affecting factors. Then, the sensitivity of different combinations of these factors for modeling was validated using the forward elimination technique. The MBSVM landslide model was built using the datasets generated from the best selected factors and validated utilizing the area under the receiver operating characteristic (ROC) curve (AUC), statistical indexes, and the Wilcoxon signed-rank test. Results show that this novel hybrid model has good performance both in terms of goodness of fit with the training dataset (AUC = 0.972) and the capability to predict landslides with the testing dataset (AUC = 0.966). The efficiency of the proposed model was then validated by comparison with logistic regression (LR), a single SVM, and another hybrid model of the AdaBoost ensemble and an SVM (ABSVM). Comparison results show that the MBSVM outperforms the LR, single SVM, and hybrid ABSVM models. Thus, the proposed model is a promising and good alternative tool for landslide hazard assessment in landslide-prone areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of Engineering Geology and the Environment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.