Abstract

An effective hybrid algorithm is proposed for solving multiobjective optimization engineering problems with inequality constraints. The weighted sum technique and BFGS quasi-Newton’s method are combined to determine a descent search direction for solving multiobjective optimization problems. To improve the computational efficiency and maintain rapid convergence, a cautious BFGS iterative format is utilized to approximate the Hessian matrices of the objective functions instead of evaluating them exactly. The effectiveness of the proposed algorithm is demonstrated through a comparison study, which is based on numerical examples. Meanwhile, we propose an effective multiobjective optimization strategy based on the algorithm in conjunction with the surrogate model method. This proposed strategy has been applied to the crashworthiness design of the primary energy absorption device’s crash box structure and front rail under low-speed frontal collision. The optimal results demonstrate that the proposed methodology is promising in solving multiobjective optimization problems in engineering practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.