Abstract
We cloned and expressed a new organic anion transporting polypeptide (OATP), termed human OATP2, (OATP-C, LST-1; symbol SLC21A6), involved in the uptake of various lipophilic anions into human liver. The cDNA encoding OATP2 comprised 2073 base pairs, corresponding to a protein of 691 amino acids, which were 44% identical to the known human OATP. An antibody directed against the carboxy terminus localized OATP2 to the basolateral membrane of human hepatocytes. Northern blot analysis indicated a strong expression of OATP2 only in human liver. Transport mediated by recombinant OATP2 and its localization were studied in stably transfected Madin-Darby canine kidney strain II (MDCKII) and HEK293 cells. Confocal microscopy localized recombinant OATP2 protein to the lateral membrane of MDCKII cells. Substrates included 17beta-glucuronosyl estradiol, monoglucuronosyl bilirubin, dehydroepiandrosterone sulfate, and cholyltaurine. 17beta-Glucuronosyl estradiol was a preferred substrate, with a Michaelis-Menten constant value of 8.2 microM; its uptake was Na(+) independent and was inhibited by sulfobromophthalein, with a inhibition constant value of 44 nM. Our results indicate that OATP2 is important for the uptake of organic anions, including bilirubin conjugates and sulfobromophthalein, in human liver.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Gastrointestinal and Liver Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.