Abstract

AbstractAs the capacity of medium or large hydroelectric generators increases, conventional grounding methods face challenges in effectively limiting single‐phase to earth fault current and neutral displacement voltage within acceptable range. Excessive fault current and neutral displacement voltage pose threats to the stability and safety of power generation and transmission systems. Inherent design deficiencies in conventional grounding methods lead to failures in meeting fault current and voltage requirements. To address this, this paper proposes a novel grounding method utilizing high impedance to restrict excessive fault current and neutral displacement voltage. The method minimizes both fault current and neutral displacement voltage by optimally selecting device parameters through minimal iterative trials. Additionally, a novel indicator is introduced to evaluate the effectiveness of grounding method by monitoring changes in neutral displacement voltage. The method is tested through theoretical calculation and field experiments, successfully implemented in large‐size hydroelectric generator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.