Abstract

The core protein allosteric modulators (CpAMs) have shown great potential as highly effective antiviral drugs against hepatitis B virus (HBV) in preclinical studies and clinical trials. In this study, we evaluated a small molecule compound called QL-007, which could potentially influence capsid assembly, using HBV replicated and susceptible cell models as well as mice infected with rAAV-HBV. QL-007 significantly inhibited HBV replication in a dose-dependent manner both in vitro and in vivo, resulting in significant decreases in HBV DNA, 3.5 kb HBV RNA and HBeAg. Furthermore, QL-007 not only induced the formation of misshaped Cp149 capsids but also possessed the capability to disassemble HBV capsids. It is noteworthy that QL-007 effectively reduced cccDNA biosynthesis in de novo infections. Mechanistically, QL-007 blocked the encapsidation of pgRNA and induced aberrant polymers assembly at concentrations ≥100 nM, while having no impact on the stability of core proteins. In conclusion, our findings underscore the potential of QL-007 as an effective agent against HBV replication and introduce it as a novel CpAM for the antiviral treatment of chronic hepatitis B.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call