Abstract
This letter solves a major hurdle that mars photolithography-based fabrication of micro-mesoscale structures in silicon. Conventional photolithography is usually performed on smooth, flat wafer surfaces to lay a 2D design and subsequently etch it to create single-level features. It is, however, unable to process non-flat surfaces or already etched wafers and create more than one level in the structure. In this study, we have described a novel cleanroom-based process flow that allows for easy creation of such multi-level, hierarchical 3D structures in a substrate. This is achieved by introducing an ultra-thin sacrificial silicon dioxide hardmask layer on the substrate which is first 3D patterned via multiple rounds of lithography. This 3D pattern is then scaled vertically by a factor of 200–300 and transferred to the substrate underneath via a single shot deep etching step. The proposed method is also easily characterizable—using features of different topographies and dimensions, the etch rates and selectivities were quantified; this characterization information was later used while fabricating specific target structures. Furthermore, this study comprehensively compares the novel pattern transfer technique to already existing methods of creating multi-level structures, like grayscale lithography and chip stacking. The proposed process was found to be cheaper, faster, and easier to standardize compared to other methods—this made the overall process more reliable and repeatable. We hope it will encourage more research into hybrid structures that hold the key to dramatic performance improvements in several micro-mesoscale devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.