Abstract

Hand-eye calibration is a vital step in the laser profilometer integrated measurement system. However, the widely applied standard sphere calibration process requires extensive laborious human work and expertise. To standardize and streamline the hand-eye calibration process for Industry 4.0, a semi-automatic calibration process was proposed, containing a calibration postures generation model and an intelligent circle detection method based on machine learning. With the proposed process, the measurement system can collect required data with minimal human participation and automatically processes them, which can significantly improve hand-eye calibration accuracy and efficiency. Additionally, an exhaustive study of the influence of the number of postures on the calibration accuracy of the industrial robot and automated fibre placement (AFP) machine demonstrates the proposed model’s effectiveness. Moreover, the current study’s results can also be excellent tools for further hand-eye calibration research. Our code and dataset are made publicly at: https://github.com/tangyipeng100/hand_eye_cali_circle_segmentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.