Abstract
In 2020, a new type of coronavirus is in the global pandemic. Now, the number of infected patients is increasing. The trend of the epidemic has attracted global attention. Based on the traditional Richards model and the differential information principle in grey prediction model, this paper uses the modified grey action quantity to propose a new grey prediction model for infectious diseases. This model weakens the dependence of the Richards model on single-peak and saturated S-shaped data, making Richards model more applicable, and uses genetic algorithm to optimize the nonlinear terms and the background value. To illustrate the effectiveness of the model, groups of slowly growing small-sample and large-sample data are selected for simulation experiments. Results of eight evaluation indexes show that the new model is better than the traditional GM(1,1) and grey Richards model. Finally, this model is applied to China, Italy, Britain and Russia. The results show that the new model is better than the other 7 models. Therefore, this model can effectively predict the number of daily new confirmed cases of COVID-19, and provide important prediction information for the formulation of epidemic prevention policies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.