Abstract
A novel biochar-based magnetic nanocomposite (GSMB) was prepared from white tea waste via green synthesis method. The sorption properties and regeneration of GSMB were studied using Pb(II) and Cd(II) to better understand its ability in heavy metal recovery. The adsorption kinetics data were modelled using pseudo-first order, pseudo-second order, Elovich and intraparticle diffusion models, while Pb(II) and Cd(II) isotherms were modelled with Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models. Results showed that Pb(II) adsorption was well described by pseudo-second order while the Elovich model best described the Cd(II) adsorption trend, indicating the sorption of Pb(II) and Cd(II) onto GSMB were dominated by chemisoprtion rather than physisorption. Langmuir model gave the best fit to Pb(II) sorption, and the Cd(II) adsorption was well described by Temkin model. The maximum adsorption capacity of Pb(II) and Cd(II) onto GSMB were 81.6 mg/g and 38.6 mg/g, respectively. Scanning electron microscope coupled with energy dispersive x-ray, X-ray diffraction and Fourier transform infrared spectroscopy analyses revealed that iron oxides played a key role during adsorption process and the adsorption mechanisms include surface electrostatic attraction and surface complexation for both metals. Among the five regenerating agents studied, 0.1 M EDTA-2Na was favoured for the desorption of Pb(II) onto GMSB. The findings from the regeneration studies revealed ∼54% of Pb(II) adsorption capacity remained after three sorption-desorption cycles implying the adsorbent could potentially be further reused.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have