Abstract

AbstractA novel structure for an H2/O2 fuel cell with a proton conducting glass electrolyte and a Pt/C catalyst was developed. The performance of the fuel cell, which was impregnated with a glass electrolyte and a gaseous hydrogen–oxygen feed at low temperature in a humidified atmosphere was significantly improved by introducing membrane electrode assemblies (MEAs) consisting of heteropolyacids (HPAs) (phosphotungstic acid, PWA and phosphomolybdic acid, PMA) doped with a P2O5‐SiO2 glass electrolyte. The HPAs containing porous glass electrolytes show promise for applications in low temperature H2/O2 fuel cells. The electrochemical behaviour of these materials was studied by measuring the current–voltage profile from polarisation curves. A maximum power density of ≈ 35 mW cm–2 was obtained at 30 °C and 30% RH (relative humidity) using a PMA/PWA‐P2O5‐SiO2 glass electrolyte membrane. The impedance measurements displaying the total cell ohmic resistance for 12 h at 0.5 V were evaluated at 30 °C. The resistance value was 3.5 Ω for an operating time of 12 h. This MEA showed the best and the most stable performance for use in an H2/O2 fuel cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.