Abstract

Although the S8 family in the MEROPS database contains many peptidases, only a few S8 peptidases have been applied in the preparation of bioactive oligopeptides. Bovine bone collagen is a good source for preparing collagen oligopeptides, but has been so far rarely applied in collagen peptide preparation. Here, we characterized a novel S8 gelatinase, Aa2_1884, from marine bacterium Flocculibacter collagenilyticus SM1988T, and evaluated its potential application in the preparation of collagen oligopeptides from bovine bone collagen. Aa2_1884 is a multimodular S8 peptidase with a distinct domain architecture from other reported peptidases. The recombinant Aa2_1884 over-expressed in Escherichia coli showed high activity toward gelatin and denatured collagens, but no activity toward natural collagens, indicating that Aa2_1884 is a gelatinase. To evaluate the potential of Aa2_1884 in the preparation of collagen oligopeptides from bovine bone collagen, three enzymatic hydrolysis parameters, hydrolysis temperature, hydrolysis time and enzyme-substrate ratio (E/S), were optimized by single factor experiments, and the optimal hydrolysis conditions were determined to be reaction at 60 ℃ for 3 h with an E/S of 400 U/g. Under these conditions, the hydrolysis efficiency of bovine bone collagen by Aa2_1884 reached 95.3%. The resultant hydrolysate contained 97.8% peptides, in which peptides with a molecular weight lower than 1000 Da and 500 Da accounted for 55.1% and 39.5%, respectively, indicating that the hydrolysate was rich in oligopeptides. These results indicate that Aa2_1884 likely has a promising potential application in the preparation of collagen oligopeptide-rich hydrolysate from bovine bone collagen, which may provide a feasible way for the high-value utilization of bovine bone collagen.

Highlights

  • Bioactive oligopeptides are referred to peptides that consist of 2–20 amino acids, which have various bioactivities [1]

  • In addition to alcalase that are from Bacillus and have been used in collagen oligopeptide preparation [28], MCP-01 has been shown to have a potential in preparing collagen bioactive peptides from codfish skin [7]

  • The results showed that peptides with a molecular weight lower than 3000 Da, 1000 Da, and 500 Da accounted for approximately 71.6 ± 0.2%, 55.1 ± 0.2%, and 39.5 ± 0.2%, respectively (Table 4), indicating that the hydrolysate is rich in collagen oligopeptides

Read more

Summary

Introduction

Bioactive oligopeptides are referred to peptides that consist of 2–20 amino acids, which have various bioactivities [1]. In addition to being efficient amino acid sources, bioactive oligopeptides have been reported to possess many physiological functions and attractive physic properties in pharmacy (e.g., anticancer, antimicrobial, antihypertensive and antiinflammatory activities, anticoagulant, and immunomodulatory), foods (gelling activity and emulsifying property), cosmetic (antioxidant and water holding capacity), and other functional products (foaming ability and hydrophobicity) [2,3,4,5]. Due to their activity on natural or denatured collagen, these S8 peptidases may have potentials in collagen oligopeptide preparation. In addition to alcalase that are from Bacillus and have been used in collagen oligopeptide preparation [28], MCP-01 has been shown to have a potential in preparing collagen bioactive peptides from codfish skin [7]. It is still necessary to identify more S8 peptidases suitable for preparing collagen bioactive peptides

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call