Abstract

In response to the growing number of diabetes cases worldwide, Our study addresses the escalating issue of diabetic eye disease (DED), a significant contributor to vision loss globally, through a pioneering approach. We propose a novel integration of a Genetic Grey Wolf Optimization (G-GWO) algorithm with a Fully Convolutional Encoder-Decoder Network (FCEDN), further enhanced by a Kernel Extreme Learning Machine (KELM) for refined image segmentation and disease classification. This innovative combination leverages the genetic algorithm and grey wolf optimization to boost the FCEDN's efficiency, enabling precise detection of DED stages and differentiation among disease types. Tested across diverse datasets, including IDRiD, DR-HAGIS, and ODIR, our model showcased superior performance, achieving classification accuracies between 98.5% to 98.8%, surpassing existing methods. This advancement sets a new standard in DED detection and offers significant potential for automating fundus image analysis, reducing reliance on manual examination, and improving patient care efficiency. Our findings are crucial to enhancing diagnostic accuracy and patient outcomes in DED management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.