Abstract

This paper introduces a novel methodology for residential building contouring from large-scale airborne point clouds. Unlike other methods that handle linearization and regularization of the linear primitives separately by imposing rigid constraints, we propose an optimization-based linearization and global regularization to form accurate, topologically error-free, and lightweight polygons. To this end, we enhance the classic density-based spatial clustering of applications with noise algorithm to segment individual building entities at the instance level. The initial contours of each individual building are then delineated and further decomposed by a novel topologically aware propagation process and a global optimization technique. The decomposed linear primitives are fed into the global regularization step, from which the regular shapes are learned and enforced hierarchically by imposing constraints, such as parallelism, homogeneity, orthogonality, and collinearity. Based on the concept of hybrid representation, the regularized and unaltered linear primitives are jointly connected in an esthetic way. Various experiments using representative buildings and large-scale residential scenes from the Dutch AHN3 data set have shown that the proposed methodology generates meaningful building contouring representation in terms of accuracy, compactness, topology, and levels of detail abstraction while being robust and scalable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.