Abstract

In this paper, we propose a fluorometric approach for the highly sensitive detection of inorganic pyrophosphatase (PPase) based on G-quadruplex-thioflavin T (ThT). In the absence of PPase, Cu2+ can coordinate with pyrophosphate (PPi) to generate a Cu2+/PPi complex. Then the G-rich sequence folds into the G-quadruplex structure, which can combine with ThT to generate a remarkable fluorescent signal. In the presence of PPase, the coordinated compound can be destroyed by the PPase catalyzed hydrolysis of PPi into inorganic phosphate (Pi). The subsequent release of Cu2+ can compete with ThT to induce a tighter G-quadruplex structure, causing the release of ThT and a sharp fluorescence decrease. Based on this mechanism, a facile and quantitative strategy for PPase detection was developed. The fluorescence intensity of the system shows a linear relationship with the PPase activities in the range of 0.5–30 U/L with a detection limit as low as 0.48 U/L. The proposed strategy for fluorescence spectrometric PPase detection is convenient, cost effective, and sensitive. This can be utilized to evaluate the inhibition effect of NaF on PPase as well as diagnose PPase-related diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.