Abstract

A novel ultrasensitive dual-functional biosensor for highly sensitive detection of inorganic pyrophosphate (PPi) and pyrophosphatase (PPase) activity was developed based on the fluorescent variation of globulin protected gold nanoclusters (Glo@Au NCs) with the assistance of Cu2+. Glo@Au NCs and PPi were used as the fluorescent indicator and substrate for PPase activity evaluation, respectively. In the presence of Cu2+, the fluorescence of the Glo@Au NCs will be quenched owing to the formation of Cu2+-Glo@Au NCs complex, while PPi can restore the fluorescence of the Cu2+-Glo@Au NCs complex because of its higher binding affinity with Cu2+. As PPase can catalyze the hydrolysis of PPi, it will lead to the release of Cu2+ and re-quench the fluorescence of the Glo@Au NCs. Based on this mechanism, quantitative evaluation of the PPi and PPase activity can be achieved ranging from 0.05 μM to 218.125 μM for PPi and from 0.1 to 8 mU for PPase, with detection limits of 0.02 μM and 0.04 mU, respectively, which is much lower than that of other PPi and PPase assay methods. More importantly, this ultrasensitive dual-functional biosensor can also be successfully applied to evaluate the PPase activity in human serum, showing great promise for practical diagnostic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.