Abstract

Published standards for the performance evaluation of pulmonary ventilators are mainly directed to manufacturers rather than to end-users and often considered inadequate or not comprehensive. In order to contribute to overcome the problems above, a novel measurement system was proposed and tested with waveforms of mechanical ventilation by means of experimental trials carried out with infant ventilators typically used in neonatal intensive care units: the main quantities of mechanical ventilation in newborns are monitored, i.e. air flow rate, differential pressure and volume from infant ventilator are measured by means of two novel fiber-optic sensors (OFSs) developed and characterized by the authors, while temperature and relative humidity of air mass are obtained by two commercial transducers. The proposed fiber-optic sensors (flow sensor Q-OFS, pressure sensor P-OFS) showed measurement ranges of air flow and pressure typically encountered in neonatal mechanical ventilation, i.e. the air flow rate Q ranged from 3 l min−1 to 18 l min−1 (inspiratory) and from −3 l min−1 to −18 l min−1 (expiratory), the differential pressure ΔP ranged from −15 cmH2O to 15 cmH2O. In each experimental trial carried out with different settings of the ventilator, outputs of the OFSs are compared with data from two reference sensors (reference flow sensor RF, reference pressure sensor RP) and results are found consistent: flow rate Q showed a maximum error between Q-OFS and RF up to 13 percent, with an output ratio QRF/QOFS of not more than 1.06 ± 0.09 (least square estimation, 95 percent confidence level, R2 between 0.9822 and 0.9931). On the other hand the maximum error between P-OFS and RP on differential pressure ΔP was lower than 10 percent, with an output ratio ΔPRP/ΔPOFS between 0.977 ± 0.022 and 1.0 ± 0.8 (least square estimation, 95 percent confidence level, R2 between 0.9864 and 0.9876). Despite the possible improvements, results were encouraging and suggested the proposed measurement system can be considered suitable for performances evaluation of neonatal ventilators and useful for both end-users and manufacturers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call