Abstract
Abstract Unmanned aerial vehicles (UAV) are able to achieve autonomous flight without drivers, and UAV has been a key tool to extract space data. Therefore, how to detect the trajectories of targets from UAV aerial image sequences is of great importance. Because local features are suitable to detect target tracking, we exploit scaleinvariant feature transform (SIFT) features to describe the interesting keypoints of targets. The main innovation of this paper is to utilize Multiple hypothesis tracking (MHT) algorithm to track an object (target) in a series of image sequences. Particularly, we develop a MHT framework based on a multidimensional assignment formulation and a sliding time window policy. To obtain target tracking from UAV aerial image sequences, three steps should be done, that is, 1) Breaking each track set into tracklet at a specific time, 2) Estimating the association cost of each track set, 3) Merging trajectory fragments to a longer one iteratively. Finally, we collect several UAV aerial image sequences with different target density to construct a dataset, and experimental results demonstrate the effectiveness of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.