Abstract

The Multiple Hypotheses Tracking (MHT) algorithm has been shown to have the best tracking performance among existing multi-target tracking algorithms using real world sensors with probability of detection less than unity and in the presence of false alarms. The improved performance of the Multiple Hypotheses Tracking comes at the cost of signicantly higher computational complexity. Most Multiple Hypotheses Tracking implementations only form the best global hypothesis. This paper compares the Linear Multitarget Integrated Track Splitting (LMITS) tracking algorithm with the Multiple Hypotheses Tracking algorithm. LMITS has a simpler structure than Multiple Hypotheses Tracking as it decouples local hypotheses and avoids the measurement to multi-track allocation entirely. The number of LMITS hypotheses equals the sum of the number of local hypotheses added to the number of initiation hypotheses. Thus LMITS can retain a deeper hypotheses subtree which can result in better performance. We compare tracking performances of LMITS and MHT algorithms using simulated data for multiple maneuvering targets in heavy and non-uniform clutter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call