Abstract
It is highly expected that partially shaded condition (PSC) occurs due to the moving clouds in a large photovoltaic (PV) generation system (PGS). Several peaks can be seen in the P-V curve of a PGS under such PSC which decreases the efficiency of conventional maximum power point tracking (MPPT) methods. In this paper, an adaptive neuro-fuzzy inference system (ANFIS) is proposed based on particle swarm optimization (PSO) for MPPT of PV modules. After tuning the parameters of the fuzzy system, including membership function parameters and consequent part parameters, to obtain maximum power point (MPP), a DC/DC boost converter connects the PV array to a resistive load. ANFIS reference model is used to control duty cycle of the DC/DC boost converter, so that maximum power is transferred to the resistive load. Comparing the proposed method with PSO alone method and firefly algorithm (FA) alone shows its efficacy and high speed tracking of MPP under PSC. Due to the fact that these optimization algorithms have online applications, the convergence time of the algorithms is very important. The simulation results show that the convergence time for the proposed ANFIS-based method is lower than 0.15 second, while it is nearly three second for PSO and FA methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.