Abstract

The Gabor wavelets are used to extract facial features, and then a doubly nonlinear mapping kernel PCA (DKPCA) is proposed to perform feature transformation and face recognition. The conventional kernel PCA nonlinearly maps an input image into a high-dimensional feature space in order to make the mapped features linearly separable. However, this method does not consider the structural characteristics of the face images, and it is difficult to determine which nonlinear mapping is more effective for face recognition. In this work, a new method of nonlinear mapping, which is performed in the original feature space, is defined. The proposed nonlinear mapping not only considers the statistical properties of the input features, but also adopts an Eigen mask to emphasize those important facial feature points The proposed algorithm is evaluated based on the Yale database, the AR database, the ORL database and the YaleB database.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.