Abstract

Both lithium and valproate have been used in the treatment of manic-depressive illness with very limited understanding of their therapeutic mechanism of action. Recent literature suggests that blocking of potassium channels may be a common therapeutic mechanism of many antidepressant agents. To determine whether the commonly used antimanic agents could prevent potassium efflux-induced cell damage and apoptosis and the underlying mechanisms, we treated SH-SY5Y human neuroblastoma cells with the potassium ionophore, valinomycin (2–100 μM) and observed cell shrinkage, mitochondria damage, a significant increase in of lactate dehydrogenase (LDH) activity and caspase-3 protein expression. Cells treated with lithium (0.5–3 mM) or valproate (0.07–1.4 mM) alone produced no apoptotic morphological and biochemical changes while both mood stabilizers pretreatment reduced or prevented the apoptotic morphological changes. However, valinomycin-induced caspase-3 elevation was only prevented by lithium pretreatment while both lithium and valproate attenuated valinomycin-induced LDH release. Our results suggest that lithium and valproate share a common neuroprotective action against potassium efflux-induced cell apoptosis with different mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.