Abstract

Caspase-3 is a critical effector caspase for apoptosis, which cleaves proteins, including cytoskeletal and associated proteins, kinases, and members of the Bcl-2 family of apoptosis-related proteins. This leads to changes in apoptotic morphology, such as membrane externalization and cytoplasm and nuclear condensation. It has been reported that pro-caspase-3 is activated in the cytosol. However, it remains obscure how caspase-3 activation correlates to serial changes in cell morphology during apoptosis. The current study was therefore undertaken to assess the relationship between caspase-3 activation and its subcellular localization and alterations in apoptotic morphology in MOLT-4 human leukemia cells exposed to X-ray irradiation. Fluorescence labeled inhibitor of caspases (FLICA) was used to detect caspase-3 activity in apoptotic cells in this project; cell morphology and caspase-3 sub-localization were determined by confocal microscopy. Our data showed that MOLT-4 cells presented typical morphological changes in apoptosis, such as membrane reversion, DNA fragmentation, and formation of apoptotic cell bodies following 10 Gray (Gy) of X-ray irradiation. Caspase-3 was activated 2 h after X-ray irradiation, and its activity increased markedly after 4-6-h exposure. Membrane reversion in MOLT-4 leukemia cells was detected by Annexin V assay at 4 h following X-ray irradiation, 2 h after the elevated caspase-3 activity was measured. Cytologically, activation of caspase-3 was first observed close to the inside surface of the cellular membrane, then transferred to the cytoplasm, and finally translocated to the nuclear region. We conclude that caspase-3 is activated in MOLT-4 cells following exposure to X-rays, and that the enhanced caspase-3 activity and its sub-localization shifting is correlated to changes in apoptotic morphology. The spatial shift of activated caspase-3 in X-ray-induced apoptotic MOLT-4 leukemia cells is a process of crucial importance for apoptosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.