Abstract

As the cognition of metal oxide semiconductor becomes deeper and deeper, their excellent sensing ability has also been demonstrated. The gas sensors with metal oxide semiconductor as basis materials have become a hot topic at present. Enhancing the sensitivity and reducing the test limit of the sensor are exceedingly important topic. It is crucial to regulate the morphology of metal oxide semiconductor materials to improve the gas sensing performance. Low-dimensional materials such as quantum dots, one-dimensional nanowires and nanorods usually show the excellent gas-sensitive properties. In this work, one-dimensional YFeO3 nanorods were synthesized by electrospinning technology. The one-dimensional rod-like structure enables more active sites to be exposed on the surface of materials, which can effectively promote the adsorption process of the YFeO3 nanorods to the test gases, so as to improve the gas sensing performance. Found by testing the gas sensitivity, YFeO3 nanorods responds far better to ethanol than other tested gases. The response and recovery time of YFeO3 nanorods to 100 ppm ethanol at 350 °C was approximately 19 s and 9 s, respectively. It indicates that the response and recovery ability of YFeO3 nanorods to ethanol were excellent. The study can provide technical reference for subsequent preparation of remarkable performance ethanol sensor and enrich the materials category of gas sensor fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call