Abstract

Hydrazine is a highly toxic and flammable liquid that can damage human liver, kidney, and central nervous system. Therefore, it is valuable to seek a quick and sensitive method for hydrazine detection in environmental and biological science. Herein, a new fluorescent probe derived from 3-hydroxyphthalimide was synthesized. This probe can rapidly and selectively detect hydrazine with a low detection limit of 4.3 × 10-7M. The recognition principle is based on hydrazine-induced acetyl deprotection and excited-state intramolecular proton transfer (ESIPT) process. Moreover, test paper and fluorescence imageexperiments showed thatthis probe had potential to monitor hydrazine inthe environment and living cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.