Abstract

An oral colon specific drug delivery platform has been developed to facilitate targetted release of therapeutic proteins as well as small molecule drugs. A simple enzymatic procedure is used to modify the molecular architecture of a lightly chemically crosslinked galactomannan hydrogel as well as a model drug–galactomannan oligomer conjugate, fluoroisocynate (FITC) tagged guar oligomer, to entrap the model drug. The enzyme-modified hydrogel retains the drug until it reaches the colonic environment where bacteria secrete enzymes (namely β-mannanase) to degrade the gel and release the drug molecule. Laser scanning confocal microscopy combined with fluorescence recovery after photobleaching is used to quantify the diffusion of the drug conjugate. The diffusion coefficient of solutes in the lightly crosslinked galactomannan hydrogel is approximately equal to the diffusion coefficient in the guar solution for simple diffusional drug loading. After drug loading, α-galactosidase treatment generates additional physical crosslinks in the hydrogel matrix as well as between the drug–oligomer conjugate and the hydrogel, which reduces diffusion of the drug–oligomer conjugate significantly. Degradation of the hydrogel by β-mannanase results in a slow and controlled rate of FITC–guar oligomer diffusion, which generates an extended release profile for the model drug.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call