Abstract
Overcoming the vaginal barrier to achieve sufficient drug penetration and retention is a huge obstacle for drug delivery in chemotherapeutics for cervical cancer. In this study, we investigate the feasibility of a novel composite nanocrystal/nanofiber system for improving the transmucus penetration and, thus, enhancing retention and drug delivery to the lesion of a cervicovaginal tumor. Herein, paclitaxel (PTX) was sequentially formulated in the form of nanocrystals, coated with polydopamine (PDA), and modified with PEG. The nanocrystals (NCs@PDA–PEG) were creatively fabricated to create a composite nanofibrous membrane (NCs@PDA-PEG NFs) by using an electrospinning technique. The morphology, size distribution, drug loading, encapsulation efficiency, X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectra, in vitro release, in vivo vaginal retention, apoptosis index, anti-tumor efficacy in a murine cervicovaginal tumor model, and local irritation were characterized. The NCs@PDA-PEG were formulated in a cube-like shape with an average size of 385.6 ± 35.47 nm; they were dispersed in electrospun nanofibers, and the drug loading was 7.94 %. The XRD curves indicated that the phase state of PTX changed after the creation of the nanocrystals. The FTIR spectra showed that the drug and the excipients were compatible with each other. In vitro delivery showed that the dissolution of PTX in the electrospun nanofibers was significantly faster than that when using bulk PTX. Compared with the PTX NC NFs, the NC@PDA-PEG NFs exhibited prolonged vaginal residence, superior transmucus penetration, minimal mucosal irritation, and significant tumor inhibition efficacy after the intravaginal administration of the NFs in tumor-bearing mice. In conclusion, by acting as novel pharmaceutical repositories, NCs@PDA-PEG NFs can be promising candidates for non-invasive local treatment, leading to efficient tumor inhibition in cervicovaginal cancer.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have