Abstract

An electrochemical deposition method was used to fabricate a gold nanoflower (AuNF) and carbon nanoparticle (CNP) modified carbon paper (CP) sensor (AuNFs-CNPs/CP) for the low-cost detection of 5-methyltetrahydrofolate (5-mTHF) in egg yolk. AuNF morphology and structures were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), revealing nanoflower sizes in the 50 to 200 nm range. AuNFs formed on the sensor were in the Au0. We evaluated 5-mTHF assay performance using cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The AuNFs-CNPs/CP sensor detected 5-mTHF concentrations in the ranges from 1 to 5 mg L−1 and 1–20 μg L−1, with an excellent limit of detection of 1 μg L−1 and good selectivity toward 5-mTHF, when compared to other potentially interfering molecules in samples. The AuNFs-CNPs/CP sensor was also used to detect 5-mTHF in folate-rich, and was found to be twice than that of ordinary egg yolk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call