Abstract
Monitoring of myoglobin (Mb) in human blood serum is highly in demand for early diagnosis of acute myocardial infarction (AMI). Here, a novel electrochemical aptasensor was developed for ultrasensitive and selective detection of Mb, based on Y-shape structure of dual-aptamer (DApt)-complementary strand of aptamer (CS) conjugate, gold electrode and exonuclease I (Exo I). The designed aptasensor obtains features of gold, such as high electrochemical conductivity and large surface area, property of Y-shape structure of DApt-CS conjugate to function as a gate and obstacle for the access of redox probe to the surface of electrode, as well as high specificity and sensitivity of aptamer toward its target and Exo I as an enzyme which specifically degrades the 3′-end of single-stranded DNA (ssDNA). In the absence of Mb, the Y-shape structure remains intact. So, a weak electrochemical signal is observed. Upon addition of target, the DApt leave the CS and bind to Mb, leading to disassembly of Y-shape structure and following the addition of Exo I, a strong electrochemical signal could be recorded. The fabricated aptasensor showed high selectivity toward Mb with a limit of detection (LOD) as low as 27pM. Besides, the developed aptasensor was effectively applied to detect Mb in human serum.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have