Abstract

Fungicides are used to control fungal plant pathogens, but they may also be highly toxic to aquatic fungi, which play an important role in natural aquatic ecosystems. However, a bioassay method using aquatic fungi has not been sufficiently developed. In the present study, a novel, efficient, and ecologically relevant bioassay method was developed for the ecological effect assessment of fungicides. Candidate test species were selected by considering the following 4 factors: 1) their ecological relevance (i.e., widely distributed and frequently observed) in freshwater habitats, 2) inclusion of a wide range of taxonomic groups, 3) availability from public culture collections, and 4) suitability for culture experiments using a microplate. The following 5 fungal species were selected: Rhizophydium brooksiaum (Chitridiomycota), Chytriomyces hyalinus (Chitridiomycota), Tetracladium setigerum (Ascomycota), Sporobolomyces roseus (Basidiomycota), and Aphanomyces stellatus (Oomycota, fungus-like organism). An efficient test method using the 5 species was developed based on a microplate assay using a 96-well white microplate and a test duration of 48 h. Fungal biomass was determined as adenosine 5'-triphosphate (ATP) luminescence, which is known to be proportional to live cell density and can be determined with a microplate reader. Test performance was evaluated by conducting bioassays of 3,5-dichlorophenol and malachite green as standard test substances. Fungal species were clearly more sensitive than other species to the fungicide malachite green. Environ Toxicol Chem 2018;37:1980-1989. © 2018 SETAC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call