Abstract
In the field of preference-based evolutionary multiobjective optimization, optimization algorithms are required to search for the Pareto optimal solutions preferred by the decision maker (DM). The reference point is a type of techniques that effectively describe the preferences of DM. So far, the reference point is either static or interactive with the evolutionary process. However, the existing reference point techniques do not cover all application scenarios. A novel case, i.e., the reference point changes over time due to the environment change, has not been considered. This paper focuses on the multiobjective optimization problems with dynamic preferences of the DM. First, we propose a change model of the reference point to simulate the change of the preference by the DM over time. Then, a dynamic preference-based multiobjective evolutionary algorithm framework with a clonal selection algorithm (ĝa-NSCSA) and a genetic algorithm (ĝa-NSGA-II) is designed to solve such kind of optimization problems. In addition, in terms of practical applications, the experiments on the portfolio optimization problems with the dynamic reference point model are tested. Experimental results on the benchmark problems and the practical applications show that ĝa-NSCSA exhibits better performance among the compared optimization algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.