Abstract

In the present research, a novel dynamic constitutive micromechanical (DCM) model was developed to predict the strain rate dependent mechanical behavior of laminated glass/epoxy composites. The present model is an integration of the generalized strain rate dependent constitutive model as a constitutive model for the neat polymer, the plasticity model of Huang as a micromechanical model, and dynamic progressive failure criteria. This model is able to predict the longitudinal and transverse tensile and in-plane shear behaviors of unidirectional glass/epoxy composites with arbitrary fiber volume fractions at arbitrary strain rates. The present model can also predict the stress-strain behavior of laminated composites with different layups and fiber volume fractions at arbitrary strain rates. A comparison between the results predicted by the present model and the available experimental data showed that the model predicts the strain rate dependent mechanical behavior of glass/epoxy composites with very good accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.