Abstract
Levofloxacin (LVFX), a broad-spectrum antibacterial agent from the fluoroquinolone family, is universally prescribed with antipyretics, including paracetamol (APAP) analogs. In this study, a new drug-drug cocrystal of LVFX and an APAP analog was developed using a grinding and heating approach. Among 9 APAP analogs, only metacetamol (AMAP) was able to form a cocrystal with LVFX, with a stoichiometric ratio of 1:1. This cocrystal was obtained from a eutectic melt of anhydrous LVFX and AMAP after complete desorption of water from LVFX hemihydrate. The crystal structure of the cocrystal was determined by single-crystal X-ray structural analysis. Unlike LVFX hydrates, the LVFX-AMAP cocrystal did not form a channel structure where water molecules reside in LVFX hydrates. Thus, the LVFX-AMAP cocrystal did not undergo hydration under high relative humidity conditions during vapor sorption-desorption analysis and physical stability tests. LVFX photostability was improved by cocrystallization when compared with that of the hemihydrate because of hydrogen bond formation between the hydroxyl group of AMAP and the N-methylpiperazine group of LVFX, which is possibly involved in LVFX photodegradation. The LVFX-AMAP cocrystal, which is superior to LVFX hydrates in both pharmacological and physicochemical properties, is expected to be a useful solid form.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have