Abstract

Mobile environments are highly vulnerable to security threats and pose a great challenge for the wireless and mobile networks being used today. Because the mode of a wireless channel is open, these networks do not carry any inherent security and hence are more prone to attacks. Therefore, designing a secure and robust protocol for authentication in a global mobile network is always a challenging. In these networks, it is crucial to provide authentication to establish a secure communication between the Mobile User (MU), Foreign Agent (FA) and Home Agent (HA). In order to secure communication among these entities, a number of authentication protocols have been proposed. The main security flaw of the existing authentication protocols is that attackers have the ability to impersonate a legal user at any time. Moreover, the existing authentication protocols in the literature are exposed to various kind of cryptographic attacks. Besides, the authentication protocols require larger key length and more computation overhead. To remedy these weaknesses in mobility networks, DNA (Deoxyribo Nucleic Acid) based authentication scheme using Hyper Elliptic Curve Cryptosystem (HECC) is introduced. It offers greater security and allows an MU, FA and HA to establish a secure communication channel, in order to exchange the sensitive information over the radio link. The proposed system derive benefit from HECC, which is smaller in terms of key size, more computational efficiency. In addition, the security strength of this authentication system is validated through widely accepted security verification tool called ProVerif. Further, the performance analysis shows that the DNA based authentication system using HECC is secure and practically implementable in the resource-constrained mobility nodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call