Abstract

This paper aims to introduce a technique that utilizes both dynamical mechanisms and machine learning to reduce dimensionality in high-dimensional complex systems. Specifically, the method employs Hopf bifurcation theory to establish a model paradigm and use machine learning to train location parameters. The effectiveness of the proposed method is evaluated by testing the Van Der Pol equation and it is found that it possesses good predictive ability. In addition, simulation experiments are conducted using a hunting motion model, which is a well-known practice in high-speed rail, demonstrating positive results. To ensure the robustness of the proposed method, we tested it on noisy data. We introduced simulated Gaussian noise into the original dataset at different signal-to-noise ratios (SNRs) of 10 db, 20 db, 30 db, and 40 db. All data and codes used in this paper have been uploaded to GitHub.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call